Dynamic Complexity of Planar 3-Connected Graph Isomorphism

نویسنده

  • Jenish C. Mehta
چکیده

Dynamic Complexity (as introduced by Patnaik and Immerman [13]) tries to express how hard it is to update the solution to a problem when the input is changed slightly. It considers the changes required to some stored data structure (possibly a massive database) as small quantities of data (or a tuple) are inserted or deleted from the database (or a structure over some vocabulary). The main difference from previous notions of dynamic complexity is that instead of treating the update quantitatively by finding the the time/space trade-offs, it tries to consider the update qualitatively, by finding the complexity class in which the update can be expressed (or made). In this setting, DynFO, or Dynamic First-Order, is one of the smallest and the most natural complexity class (since SQL queries can be expressed in First-Order Logic), and contains those problems whose solutions (or the stored data structure from which the solution can be found) can be updated in First-Order Logic when the data structure undergoes small changes. Etessami [7] considered the problem of isomorphism in the dynamic setting, and showed that Tree Isomorphism can be decided in DynFO. In this work, we show that isomorphism of Planar 3-connected graphs can be decided in DynFO (which is DynFO with some polynomial precomputation). We maintain a canonical description of 3-connected Planar graphs by maintaining a database which is accessed and modified by First-Order queries when edges are added to or deleted from the graph. We specifically exploit the ideas of Breadth-First Search and Canonical Breadth-First Search to prove the results. We also introduce a novel method for canonizing a 3-connected planar graph in First-Order Logic from Canonical Breadth-First Search Trees.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3-connected Planar Graph Isomorphism is in Log-space

We consider the isomorphism and canonization problem for 3-connected planar graphs. The problem was known to be L -hard and in UL ∩ coUL [TW08]. In this paper, we give a deterministic log-space algorithm for 3-connected planar graph isomorphism and canonization. This gives an L -completeness result, thereby settling its complexity. The algorithm uses the notion of universal exploration sequence...

متن کامل

Graph Isomorphism for K_{3, 3}-free and K_5-free graphs is in Log-space

Graph isomorphism is an important and widely studied computational problem with a yet unsettled complexity. However, the exact complexity is known for isomorphism of various classes of graphs. Recently, [8] proved that planar isomorphism is complete for log-space. We extend this result further to the classes of graphs which exclude K3,3 or K5 as a minor, and give a log-space algorithm. Our algo...

متن کامل

Parameterized Graph Cleaning Problems

We investigate the Induced Subgraph Isomorphism problem with non-standard parametrization, where the parameter is the difference |V (G)| − |V (H)| with H and G being the smaller and the larger input graph, respectively. Intuitively, we can interpret this problem as “cleaning” the graph G, regarded as a pattern containing extra vertices indicating errors, in order to obtain the graph H represent...

متن کامل

Subexponential Time Algorithms for Embedding H-Minor Free Graphs

We establish the complexity of several graph embedding problems: Subgraph Isomorphism, Graph Minor, Induced Subgraph and Induced Minor, when restricted to H-minor free graphs. In each of these problems, we are given a pattern graph P and a host graph G, and want to determine whether P is a subgraph (minor, induced subgraph or induced minor) of G. We show that, for any fixed graph H and > 0, if ...

متن کامل

On the Complexity of Submap Isomorphism

Generalized maps describe the subdivision of objects in cells, and incidence and adjacency relations between cells, and they are widely used to model 2D and 3D images. Recently, we have defined submap isomorphism, which involves deciding if a copy of a pattern map may be found in a target map, and we have described a polynomial time algorithm for solving this problem when the pattern map is con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014